# simulation of Bulmer effect using LinearAlgebra using Distributions using Random #using Plotly using PyPlot Random.seed!(1234); nqtl=300 nanim=10000 nselect=Int(nanim/20) h2=0.8 #additive genetic variance is ~1 varp=1/h2 vare=varp-1 ngen=100 print("Base Population") # a~ N(0,1) a=randn(nqtl); # p~ unif p=rand(nqtl); sum2pq=sum(2 .* p .* (1 .-p)) a=a/sqrt(sum2pq); # storage for QTL genotypes geno=Array{Int64,3}(undef,nanim,nqtl,2); Z=Array{Int64,2}(undef,nanim,nqtl); # simulate base animals for i in 1:nanim for j in 1:nqtl for k in 1:2 geno[i,j,k]=rand(Binomial(1,p[j]),1)[1] end end end vargen=Array{Float64,1}(undef,ngen) for igen in 1:ngen println("-----------------------") println("generation number=", igen) println("-----------------------") for i in 1:nanim Z[i,:]=geno[i,:,1]+geno[i,:,2] end tbv=Z*a; println("var tbv= ",var(tbv)) vargen[igen]=var(tbv) # generate phenotype with h2 y=tbv+randn(nanim)*sqrt(vare); println("realized var y= ",var(y)) println("realized h2= ",var(tbv)/var(y)) # returns position in ranking based on y ranking=sortperm(y,rev=true); # pick best animals best=ranking[1:nselect]; tbvselect=tbv[best]; println("var tbvselect= ",var(tbvselect)) # now create next generation sampling 2 alleles at random from # selected individuals (possibly with selfing) genonew=Array{Int64,3}(undef,nanim,nqtl,2); for i in 1:nanim; for j in 1:nqtl for k in 1:2 ancestor=rand(1:nselect); orig=rand(1:2); genonew[i,j,k]=geno[ancestor,j,orig]; end end end geno[:,:,:]=genonew #not the same as geno=genonew !!! end plot(vargen)
Wednesday, June 12, 2019
simulation of reduction of variance and Bulmer effect
As it is so difficult to understand reduction of variance due to selection and Bulmer effect I just simulated it in julia (code below). This is a rather crude simulation, but it gives the following plot according to expectattions (the plot using Plotly is actually quite poor).
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment